Full Friendly Index Sets of Slender and Flat Cylinder Graphs

نویسندگان

  • W. C. SHIU
  • Ivan Gutman
چکیده

Let G = (V, E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f∗ : E → Z2 defined by f∗(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef (i) = |f∗−1(i)|. A labeling f is called friendly if |vf (1)− vf (0)| ≤ 1. The full friendly index set of G consists all possible differences between the number of edges labeled by 1 and the number of edges labeled by 0. In recent years, full friendly index sets for certain graphs were studied, such as tori, grids P2 × Pn, and cylinders Cm × Pn for some n and m. In this paper we study the full friendly index sets of cylinder graphs Cm × P2 for m ≥ 3, Cm × P3 for m ≥ 4 and C3 × Pn for n ≥ 4. The results in this paper complement the existing results in literature, so the full friendly index set of cylinder graphs are completely determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full friendly index sets of cylinder graphs

Let G = (V,E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f : E → Z2 defined by f(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef(i) = |(f+)−1(i)|. A labeling f is called friendly if |vf (1) − vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = ef (1) − ef(0). The set {if(G) | f is a...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Full Edge-friendly Index Sets of Complete Bipartite Graphs

Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index o...

متن کامل

Conjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

متن کامل

On vertex balance index set of some graphs

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013